

- Views of pain & opioid effects are changing
- Glia (*microglia* & *astrocytes*) in CNS are key players in:
 - * pain amplification, including pathological pain
 - * making acute opioids (such as morphine) less effective for pain control
 - * causing chronic morphine to lose effect, contributing to opioid tolerance
 - * driving morphine dependence/withdrawal
 - * driving morphine reward, linked to drug craving
 - * driving other opioid-induced negative side effects
- Opioids activate glia via a *non-classical* opioid receptor

- Views of pain & opioid effects are changing
- Glia (*microglia & astrocytes*) in CNS are key players in:
 - * pain amplification, including neuropathic pain
 - * making acute opioids (such as morphine) less effective for pain control
 - * causing chronic morphine to lose effect, contributing to opioid tolerance
 - \ast driving morphine dependence/withdrawal
 - * driving morphine reward, linked to drug craving
 - * driving other opioid-induced negative side effects
- Opioids activate glia via a *non-classical* opioid receptor

- Views of pain & opioid effects are changing
- Glia (*microglia & astrocytes*) in CNS are key players in:
 - * pain amplification, including neuropathic pain
 - * making acute opioids (such as morphine) less effective for pain control
 - * causing chronic morphine to lose effect, contributing to opioid tolerance
 - * driving morphine dependence/withdrawal
 - * driving morphine reward, linked to drug craving
 - * driving other opioid-induced negative side effects
- Opioids activate glia via a *non-classical* opioid receptor

- Views of pain & opioid effects are changing
- Glia (*microglia & astrocytes*) in CNS are key players in:
 - * pain amplification, including neuropathic pain
 - * making acute opioids (such as morphine) less effective for pain control
 - * causing chronic morphine to lose effect, contributing to opioid tolerance
 - \ast driving morphine dependence/withdrawal
 - * driving morphine reward, linked to drug craving
 - * driving other opioid-induced negative side effects
- Opioids activate glia via a <u>non-classical</u> opioid receptor

- Views of pain & opioid effects are changing
- Glia (*microglia & astrocytes*) in CNS are key players in:
 - * pain amplification, including neuropathic pain
 - * making acute opioids (such as morphine) less effective for pain control
 - * causing chronic morphine to lose effect, contributing to opioid tolerance
 - * driving morphine dependence/withdrawal
 - * driving morphine reward, linked to drug craving
 - * driving other opioid-induced negative side effects
- Opioids activate glia via a *non-classical* opioid receptor

- Views of pain & opioid effects are changing
- Glia (*microglia & astrocytes*) in CNS are key players in:
 - * pain amplification, including neuropathic pain
 - * making acute opioids (such as morphine) less effective for pain control
 - * causing chronic morphine to lose effect, contributing to opioid tolerance
 - * driving morphine dependence/withdrawal
 - * driving morphine reward, linked to drug craving
 - * driving other opioid-induced negative side effects
- Opioids activate glia via a *non-classical* opioid receptor

- Views of pain & opioid effects are changing
- □ Glia (*microglia & astrocytes*) in CNS are key players in:
 - * pain amplification, including neuropathic pain
 - * making acute opioids (such as morphine) less effective for pain control
 - * causing chronic morphine to lose effect, contributing to opioid tolerance
 - * driving morphine dependence/withdrawal
 - * driving morphine reward, linked to drug craving
 - * driving other opioid-induced negative side effects
- Opioids activate glia via a *non-classical* opioid receptor

Opioid Effects are Different for Neurons & Glia

Neuronal Receptors are Stereoselective:

[-]-Naloxone: **Active** Antagonist

[+]-Naloxone: **INactive** Antagonist at Classical Opioid Receptor at Classical Opioid Receptor

Opioid Effects are Different for Neurons & Glia

GLIAL Receptors are Not Stereoselective!

[-]& [+] Isomers have EQUAL effects on glia

[-]-Methadone: **Active** Agonist

[+]-Methadone: **Active** Agonist at Glial Opioid Receptor

Glial opioid receptor -- Fits BOTH [-] & [+]-enantiomers

Glial Non-Stereoselectivity Extends to Opioid Antagonists! [-]-Naloxone: Active Antagonist at Glial Opioid Receptor [+]-Naloxone should POTENTIATE morphine analgesia by: (a) NOT blocking morphine effects on neurons, yet (b) Removing glial activation that OPPOSES analgesia!

S000000.....

What's the mystery opioid receptor on glia?

To target it, one must know what it is Toll-Like Receptors (TLRs):

Classically....

"not me, not right, not OK" receptors

Toll-Like Receptors (TLRs) detect:

*pathogens (bacteria, viruses, etc.)
*endogenous danger signals (damage/death)

* All classes of opioids used clinically

Hutchinson et al., The Scientific World Journal 2007 in press

TLR4 Induced Glial Activation

TLR4 expression is upregulated by:

- * Neuropathy
- * Opioids, non-stereoselectively

TLR4 is activated by:

- * Neuropathy
- * Opioid agonists, non-stereoselectively

TLR4 is blocked by:

* Naloxone, non-stereoselectively

Hutchinson et al., The Scientific World Journal 2007 in press

Toll Like Receptor-4 (TLR4):

Naloxone, a TLR4 antagonist, non-stereoselectively reverses neuropathic pain

Conclusions - 1

So, Taken Together Our Data Predict That Suppressing Glial Activation Will:

- Suppress neuropathic pain, etc.
- Improve opioid analgesia
- **♦** Suppress opioid tolerance
- **❖**Suppress opioid dependence
- Suppress opioid reward linked to drug craving/drug seeking
- **Suppress other negative side effects**

Conclusions - 2 Opioid Activation of Glia is Fundamentally Different Than Neurons:

- **⋄**Glial receptors are <u>not</u> stereoselective
- **⋄**Opioid effects on glia <u>must</u> be via different receptors than for neurons: TLR4
- Effects on glia & neurons should be separable
- To increase the efficacy of opioids:
 - * Modify opioids so they don't bind glia &/or
 - * Create long-lasting versions of [+]-naloxone

